Extreme Edge-to-vertex Geodesic Graphs

S. Sujitha
Department of Mathematics, Holy Cross College(Autonomous), Nagercoil- 629004, India. email : sujivenkit@gmail.com
\section*{J. John}
Department of Mathematics, Government College of Engineering, Tirunelveli - 627007, India. email : johnramesh1971@yahoo.co.in

A.Vijayan

Department of Mathematics, N.M Christian College, Marthandam - 629165, India.
email : vijayan2020@yahoo.in

Abstract

For a connected graph $G=(V, E)$, an edge-to-vertex geodetic basis S in a connected graph G is called an extreme edge-to-vertex geodetic basis if $S \subseteq$ S_{e}, where S_{e} denotes the set of all extreme edges of G. A graph G is said to be an extreme edge-to-vertex geodesic graph if G contains at least one extreme edge-to-vertex geodetic basis. An edge-to-vertex geodetic basis S in a connected graph G is called a perfect extreme edge-to-vertex geodetic basis if $S=S_{e}$. A graph G is said to be a perfect extreme edge-to-vertex geodesic graph if G contains a perfect extreme edge-to-vertex geodetic basis, that is, if G has an edge-to-vertex geodetic basis consisting of all the extreme edges of G. Extreme edge-to-vertex geodesic graph G of size q with edge-to-vertex geodetic number q or $q-1$ or $q-2$ are characterized. It is shown that for each triple, d, k, q of integers with $2 \leq k \leq q-d+2, d \geq 4$, and $q-d-k+1>$ 0 , there exists a perfect extreme edge-to-vertex geodesic graph G of size q with $\operatorname{diam} G=d$ and $g_{e v}(G)=k$.

Keywords: distance, geodesic, edge-to-vertex geodetic basis, edge-to-vertex geodetic number.

AMS Subject Classification: 05C12.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1, 4]. A subset $M \subseteq E(G)$ is called a matching of G if no pair of edges in M are incident. The maximum size of such M is called the matching number of G and is denoted by $\propto^{\prime}(G)$. An edge covering of G is a subset $K \subseteq E(G)$ such that each vertex of G is end of some edge in K. The number of edges in a minimum edge covering of G, denoted by $\beta^{\prime}(G)$ is the edge covering number of G. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices is the radius, $\operatorname{rad} G$ and the maximum eccentricity is the diameter, diam G of G. A geodetic set of G is a set S of vertices such that every vertex of G is contained in a geodesic joining some pair of vertices of S. The geodetic number $g(G)$ of G is the minimum cardinality of its geodetic sets and any geodetic set of cardinality $g(G)$ is a minimum geodetic set or simply a g-set of G. The geodetic number of a graph was introduced in [1] and further studied in [2,5]. It was shown in [5] that determining the geodetic number of a graph is an NP-hard problem. $N(v)=\{u \in V(G): u v \in E(G)\}$ is called the neighborhood of the vertex v in G. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. The number of extreme vertices in G is its extreme order $\operatorname{ex}(G)$. A graph G is said to be an extreme geodesic graph if $g(G)=\operatorname{ex}(G)$, that is if G has a unique minimum geodetic set consisting of the extreme vertices of G. The concept of extreme geodesic graphs is introduced in [3]. For subsets A and B of $V(G)$, the distance $d(A, B)$ is defined as $d(A, B)=\min \{d(x, y): x \in A, y \in B\}$. An $u-v$ path of length $d(A, B)$ is called an $A-B$ geodesic joining the sets A, B, where $u \in A$ and v $\in B$. A vertex x is said to lie on an $A-B$ geodesic if x is a vertex of an $A-B$ geodesic. For $A=\{u, v\}$ and $B=\{z, w\}$ with $u v$ and $z w$ edges, we write an $A-B$ geodesic as $u v-z w$ geodesic and $d(A, B)$ as $d(u v, z w)$. A set $S \subseteq E(G)$ is called an edge-to-vertex geodetic set if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number $g_{e v}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{e v}(G)$ is an edge-to-vertex geodetic basis of G. The edge-to-vertex geodetic number of a graph was introduced in [9] and further studied in $[6,8]$. Since every edge covering of G is an edge-to-vertex geodetic set of G, we have $g_{e v}(G) \leq \beta^{\prime}(G)$. For an edge $e=u v \in E(G), N(e)=N(u) \cup N(v)$. For a set $S \subseteq E(G), N(S)=\{N(e): e \in S\}$. An edge e of a graph G is called an extreme edge of G if one of its ends is an extreme vertex of G. Let S_{e} denotes the set of all extreme edges of $G, E(e)$ denotes the number of extreme edges of G, and $c(G)$ denotes the length of the longest cycle in G. A double star is a tree with diameter three. A caterpillar is a tree or more, for which the removal of all end-vertices leaves a path.
Example 1.1. For the graph G given in Figure 1.1 with $A=\left\{v_{4}, v_{5}\right\}$ and $B=\left\{v_{1}, v_{2}, v_{7}\right\}$, the paths $P: v_{5}, v_{6}, v_{7}$ and $Q: v_{4}, v_{3}, v_{2}$ are the only two $A-B$
geodesics so that $d(A, B)=2$.
Example 1.2. For the graph G given in Figure 1.2, the three $v_{1} v_{6}-v_{3} v_{4}$ geodesics are $P: v_{1}, v_{2}, v_{3} ; Q: v_{1}, v_{2}, v_{4}$; and $R: v_{6}, v_{5}, v_{4}$ with each of length 2 so that $d\left(v_{1} v_{6}, v_{3} v_{4}\right)=2$. Since the vertices v_{2} and v_{5} lie on the $v_{1} v_{6}-v_{3} v_{4}$ geodesics P and R respectively, $S=\left\{v_{1} v_{6}, v_{3} v_{4}\right\}$ is an edge-to-vertex geodetic basis of G so that $g_{e v}(G)=2$.

Figure 1.1

Figure 1.2

The following theorems are used in sequel.
Theorem 1.1.[9] If v is an extreme vertex of a connected graph G, then every edge-to-vertex geodetic set contains at least one extreme edge is incident with v.
Theorem 1.2.[9] For any connected graph $G, g_{e v}(G)=q$ if and only if G is a star.
Theorem 1.3. [9] For any connected graph G with size $q \geq 3, g_{e v}(G)=q-1$ if and only if G is either a double star or C_{3}.
Theorem 1.4.[9] For a non-trivial tree T with k end-vertices, $g_{e v}(T)=k$.
Theorem 1.5. [9] For any graph G of order $p, g_{e v}(G) \leq p-\alpha^{\prime}(G)$.

2. Extreme Edge-to- Vertex Geodesic Graphs

Definition 2.1. An edge-to-vertex geodetic basis S in a connected graph G is called an extreme edge-to-vertex geodetic basis if $S \subseteq S_{e}$. A graph G is said to be an extreme edge-to-vertex geodesic graph if G contains at least one extreme edge-to-vertex geodetic basis. An edge-to-vertex geodetic basis S in a connected graph G is called a perfect extreme edge-to-vertex geodetic basis if $S=S_{e}$. A graph G is said to be a
perfect extreme edge-to-vertex geodesic graph if G contains a perfect extreme edge-to-vertex geodetic basis, that is, if G has an edge-to-vertex geodetic basis consisting of all the extreme edges of G.
Example 2.2. For the graph G given in Figure 2.1(a), $S_{e}=\left\{v_{1} v_{2}, v_{1} v_{6}, v_{3} v_{4}, v_{4} v_{5}\right\}$. The set $S_{1}=\left\{v_{1} v_{2}, v_{4} v_{5}\right\}$ is an edge-to-vertex geodetic basis of G. Since $S_{1} \subseteq S_{e}, S_{1}$ is an extreme edge-to-vertex geodetic basis of G. Therefore, G is an extreme edge-to-vertex geodesic graph. For the graph G given in Figure 2.1(b), $S_{e}=\left\{v_{1} v_{2}, v_{1} v_{7}, v_{4} v_{5}\right\}$ is the unique extreme edge-to-vertex geodetic basis of G so that $g_{e v}(G)=3=E(e)$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.
Remark 2.3. For an extreme edge-to-vertex geodesic graph G, there can be more than one extreme edge-to-vertex geodetic basis. For the graph G given in Figure 2.1(a), S_{2} $=\left\{v_{1} v_{6}, v_{3} v_{4}\right\}$ is an extreme edge-to-vertex geodetic basis.

For the complete graph $G=K_{p}(p \geq 3)$, every edge is an extreme edge. In [9], it is proved that, $g_{e v}\left(K_{p}\right)$ is either $p / 2$ or $(p+1) / 2$. So K_{p} is an extreme edge-to-vertex geodesic graph. Since $g_{e v}\left(K_{p}\right) \neq E(e), K_{p}$ is not a perfect extreme edge-to-vertex geodesic graph. A nontrivial tree T has k extreme edges, namely its end edges and so $E(e)=k$. Since $g_{e v}(G)=k$, it follows that T is a perfect extreme edge-to-vertex geodesic graph. Obviously, a cycle $C_{p}(p \geq 4)$ has no extreme edges, a cycle is not an extreme edge-to-vertex geodesic graph. For any complete bipartite graph $G=K_{m, n}(2 \leq$ $m \leq n$), it is easily to see that no edge is an extreme edge and so G is not an extreme edge-to-vertex geodesic graph.
Theorem 2.4. Let G be an extreme edge-to-vertex geodesic graph of size $q \geq 2$ such that $d(e, f)=0$ or 1 for every $e, f \in E(G)$. Then $g_{e v}(G)=\beta^{\prime}(G)$.
Proof. Let S be an edge-to-vertex geodetic basis of G and $v \in V(G)$. We claim that v is incident with an edge of S. If not, then by Theorem 1.1, v is not an extreme vertex of G. If $v \notin N(S)$, then v lies on a $x u-y w$ geodesic, where $x u, y w \in S$. Then it follows that $d(x u, y w) \geq 2$, which is a contradiction. Therefore $v \in N(S)$. Since S is an edge-tovertex geodetic basis of G and since $d(e, f)=0$ or 1 for every $e, f \in E(G)$, the only
geodesics containing v are $x v y$ and $x y v w$, where $x v, v y, x y, v w \in S$. This contradicts the fact that v is not incident with an edge of S. Therefore v is incident with an edge of S. Which implies that S is an edge covering of G and so $\beta^{\prime}(G) \leq g_{e v}(G)$. Hence $g_{e v}(G)=$ $\beta^{\prime}(G)$.
Remark 2.5. The converse of the Theorem 2.4 is not true. For the extreme edge-tovertex geodesic graph G given in Figure 2.2, $g_{e v}(G)=\beta^{\prime}(G)=6$ and $d\left(v_{1} v_{2}, v_{8} v_{9}\right) \geq 2$.

Figure 2.2
Theorem 2.6. Let G be a connected graph of size $q \geq 2$. Then G is a perfect extreme edge-to-vertex geodesic graph with edge-to-vertex geodetic number q if and only if G $=K_{1, q}$.
Proof. This follows from Theorem 1.2.
Theorem 2.7. Let G be a connected graph of size $q \geq 3$. Then G is an extreme edgeto -vertex geodesic graph with edge-to-vertex geodetic number $q-1$ if and only if G is either C_{3} or a double star.
Proof. This follows from Theorem 1.3
Theorem 2.8. If G is an extreme edge-to-vertex geodesic graph of size $q \geq 4$ and not a tree such that $g_{e v}(G)=q-2$, then G is unicyclic and $c(G)=3$.
Proof. Let G have more than one cycle. Then $q \geq p+1$ and so $p-1 \leq q-2=g_{e v}(G) \leq$ $p-\alpha^{\prime}(G)$, by Theorem 1.5. Hence $\alpha^{\prime}(G)=1$ and so G must be either a star or the cycle C_{3}, a contradiction. Therefore G is unicyclic. Then it follows from Theorem $1.5, \propto^{\prime}(G) \leq 2$. Let C_{k} be the unique cycle of G. We have $k \leq 5$ since otherwise $\propto^{\prime}(G)$ $\geq \propto^{\prime}\left(C_{k}\right) \geq 3$. Therefore we have the following three cases:
Case 1. $k=5$. Then G cannot have any other vertices since otherwise $\alpha^{\prime}(G) \geq 3$. Therefore $G=C_{5}$ which is not an extreme edge-to-vertex geodesic graph, which is a contradiction.
Case 2. $k=4$. If $G=C_{4}$, then G is not an extreme edge-to-vertex geodesic graph. So let $G \neq C_{4}$. Because $\propto^{\prime}(G) \leq 2$, only one of the vertices of C_{4} has degree more than 2 . Therefore G is not an extreme edge-to-vertex geodesic graph, which is a contradiction. Therefore $c(G)=3$
Theorem 2.9. Let G be a connected graph of size $q \geq 4$. Then G is an extreme edge-to-vertex geodesic graph with edge-to-vertex geodetic number $q-2$ if and only if $G=$ $K_{1, q}-1+e$ or caterpillar with diameter 4 or the graph G given in Figure 2.3.

Figure 2.3
Proof. For a caterpillar of diameter 4, the result follows from Theorem 1.4. For $G=$ $K_{1, q}-1+e$, it follows from Theorem 1.1, that the set of all end edges of G together with e forms an edge -to-vertex geodetic basis so that $g_{e v}(G)=q-2$. Further it is easily verified that $g_{e v}(G)=q-2$ for the graph given in Figure 2.3.

Conversely let G be an extreme edge-to-vertex geodesic graph such that $g_{e v}(G)$ $=q-2$. Then by Theorem 2.8, G is either a tree or unicyclic. Let G be a tree. Then it follows from Theorem 1.4 that G has just two internal edges and hence G is a caterpillar. Thus in this case the graph reduces to a caterpillar of diameter 4. Now, let G be an unicyclic. By Theorem 2.8, $c(G)=3$. Since $g_{e v}\left(C_{3}\right)=2=q-1$, we have $G \neq$ C_{3}. Let $V\left(C_{3}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$. We note that if $u \in V(G)-V\left(C_{3}\right)$, then $\operatorname{deg} u=1$. Otherwise, there are $u_{1}, u_{2} \in V(G)-V\left(C_{3}\right)$ such that u_{1} is adjacent to both u_{2} and v_{1}, say. Then it is easily seen that $E(G)-\left\{u_{1} v_{1}, v_{1} v_{2}, v_{1} v_{3}\right\}$ is an edge-to-vertex geodetic set, which implies that $g_{e v}(G) \leq q-3$. Further at least one of v_{i} s should be of degree 2. Otherwise $E(G)-E\left(C_{3}\right)$ is an edge-to-vertex geodetic set, which is impossible. Thus G should be either $K_{1}, q-1+e$ or a graph like Figure 2.3.
The following theorem is proved in [9].
Theorem A. Let G be a connected graph of size q and diameter d, then $g_{e v}(G) \leq q-$ $d+2$.

If G is a perfect extreme edge-to-vertex geodesic graph, then we have the following result.
Theorem 2.10. If G is a perfect extreme edge-to-vertex geodesic graph of size q and diameter d, then $E(e) \leq q-d+2$.
Proof. Since G is a perfect extreme edge-to-vertex geodesic graph, we have $g_{e v}(G)=$ $E(e)$, now the result follows from Theorem A.
The following theorem characterize for trees.
Theorem 2.11. For any tree $T, g_{e v}(T)=q-d+2=E(e)$ if and only if T is a caterpillar.
Proof. Let $P: v_{0}, v_{1}, \ldots, v_{d-1}, v_{d}=v$ be a diametral path of length d. Let $e_{i}=v_{i-1} v_{i}(1$ $\leq i \leq d$) be the edges of the diametral path P. Let k be the number of end edges of T and l be the number of internal edges of T other than $e_{i}(2 \leq i \leq d-1)$. Then $d-2+l+$ $k=q$. By Theorem 1.4, $g_{e v}(T)=k=E(e)$ and so $g_{e v}(T)=q-d+2-l$. Hence $g_{e v}(T)=$ $q-d+2=E(e)$ if and only if $l=0$, if and only if all internal vertices of T lie on the diametral path P, if and only if T is a caterpillar.

In the following we give some realization results on perfect extreme edge-to-
vertex geodesic graphs.
Theorem 2.12. For every pair k, q of integers with $2 \leq k \leq q$, there exists a perfect extreme edge-to-vertex geodesic graph of size q with edge-to-vertex geodetic number q.
Proof. For $k=q$, the result follows from Theorem 2.6. Also, for each pair of integers with $2 \leq k<q$, there exists a tree of size q with k end edges. Hence the result follows from Theorem 1.4.
Theorem 2.13. For each triple, d, k, q of integers with $2 \leq k \leq q-d+2, d \geq 4$, and q $-d-k+1>0$, there exists a perfect extreme edge-to-vertex geodesic graph G of size q with $\operatorname{diam} G=d$ and $g_{e v}(G)=k$.
Proof. Let $2 \leq k=q-d+2$. Let G be the graph obtained from the path P of length d by adding $q-d$ new vertices to P and joining them to any cut-vertex of P. Then G is a tree of size q and diam $G=d$. By Theorem 1.4, $g_{e v}(G)=q-d+2=k$. Now, let $2 \leq k<q-d+2$.
Case 1. $q-d-k+1$ is even. Let $(q-d-k+1) \geq 2$. Let $n=\frac{(q-d-k+1)}{2}$. Then $n \geq 1$. Let $P_{d}: u_{0}, u_{1}, \ldots, u_{d}$ be a path of length d. Add new vertices $v_{1}, v_{2}, \ldots, v_{k-2}$ and $w_{1}, w_{2}, \ldots, w_{n}$ and join each $v_{i}(1 \leq i \leq k-2)$ with u_{1} and also join each $w_{i}(1 \leq i \leq n)$ with u_{1} and u_{3} in P_{d}. Now, join w_{1} with u_{2} and we obtain the graph G in Figure 2.4(a). Then G has size q and diameter d. By Theorem 1.1, all the end-edges $u_{1} v_{i}(1 \leq i \leq k-$ 2), $u_{0} u_{1}$ and $u_{d-1} u_{d}$ lie in every edge-to-vertex geodetic set of G. Let $S=\left\{u_{1} v_{1}, u_{1} v_{2}\right.$, $\left.\ldots, u_{1} v_{k-2}, u_{1} u_{0}, u_{d-1} u_{d}\right\}$ be the set of all end-edges of G. Then it is clear that S is an extreme edge-to-vertex geodetic set of G and so $g_{e v}(G)=k$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.
Case 2. $q-d-k+1$ is odd. Let $q-d-k+1 \geq 5$. Let $m=(q-d-k) / 2$. Then $m \geq$ 2. Let $P_{d}: u_{0}, u_{1}, \ldots, u_{d}$ be a path of length d. Add new vertices $v_{1}, v_{2}, \ldots, v_{k-2}$ and w_{1}, w_{2}, \ldots, w_{m} and join each $v_{i}(1 \leq i \leq k-2)$ with u_{1} and also join each $w_{i}(1 \leq i \leq m)$ with u_{1} and u_{3} in P_{d}. Now join w_{1} and w_{2} with u_{2} and we obtain the graph G in Figure 2.4(b). Then G has size q and diameter d. Now, as in Case $1, S=\left\{u_{1} v_{1}, u_{1} v_{2}, \ldots, u_{1} v_{k-2}\right.$, $\left.u_{0} u_{1}, u_{d-1} u_{d}\right\}$ is an extreme edge-to-vertex geodetic set of G so that $g_{e v}(G)=k$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.

Figure 2.4(a)

Figure 2.4(b)
Let $q-d-k+1=1$. Let $P_{d}: u_{0}, u_{1}, \ldots, u_{d}$ be a path of length d. Add new vertices $v_{1}, v_{2}, \ldots, v_{k-2}$ and w_{1} and join each $v_{i}(1 \leq i \leq k-2)$ with u_{1} and also join w_{1} with u_{1} and u_{3} in P_{d}, there by obtaining the graph G in Figure 2.4(c). Then the graph is of size q and diameter d. Now, as in Case $1, S=\left\{u_{1} v_{1}, u_{1} v_{2}, \ldots, u_{1} v_{k-2}, u_{0} u_{1}, u_{d-1} u_{d}\right\}$ is an extreme edge-to-vertex geodetic set of G so that $g_{e v}(G)=k$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.

Figure 2.4(c)
Now, let $q-d-k+1=3$. Let $P_{d}: u_{0}, u_{1}, \ldots, u_{d}$ be a path of length d. Add new vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{k-2}, w_{1}$ and w_{2} and join each $v_{i}(1 \leq i \leq k-2)$ with u_{1} and also join w_{1} and w_{2} with u_{1} and u_{3} and obtain the graph G in Figure 2.4(d). Then G has size q and diameter d. Now, as in Case $1, S=\left\{u_{1} v_{1}, u_{1} v_{2}, \ldots, u_{1} v_{k-2}, u_{0} u_{1}, u_{d-1} u_{d}\right\}$ is an extreme edge-to-vertex geodetic set of G so that $g_{e v}(G)=k$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.

Figure 2.4(d)
For every connected graph, $\operatorname{rad} G \leq \operatorname{diam} G \leq 2 \mathrm{rad} G$. Ostrand[7] showed that every two positive integers a and b with $a \leq b \leq 2 a$ are realizable as the radius and diameter, respectively, of some connected graph. Now, Ostrand's theorem can be extended to extreme to edge-to-vertex geodesic graphs.
Theorem 2.14. For positive integers r, d and $l \geq 3$ with $r<d \leq 2 r$, there exists a perfect extreme edge-to-vertex geodesic graph G with $\operatorname{rad} G=r, \operatorname{diam} G=d$ and $g_{e v}=l=$ $E(e)$.
Proof. When $r=1$, let $G=K_{1}, l$. Then $d=2$ and by Theorem 2.6, $g_{e v}(G)=l$ and G is a perfect extreme edge-to-vertex geodesic graph.. Now, let $r \geq 2$. Construct a graph G with the desired properties as follows. Let $C_{2 r}: v_{1}, v_{2}, \ldots, v_{2 r}, v_{1}$ be a cycle of order $2 r$ and let $P_{d-r+1}: u_{0}, u_{1}, u_{2}, \ldots, u_{d-r}$ be a path of order $d-r+1$. Let H be the graph obtained from $C_{2 r}$ and P_{d-r+1} by identifying v_{1} in $C_{2 r}$ and u_{0} in P_{d-r+1}. Now, add $(l-3)$ new vertices $w_{1}, w_{2}, \ldots, w_{l-3}$ to H and join each vertex $w_{i}(1 \leq i \leq l-3)$ to the vertex u_{d-r-1} and join the vertices v_{r} and v_{r+2} and obtain the graph G of Figure 2.5. Then rad $G=r$ and $\operatorname{diam} G=d$. Let $S_{e}=\left\{v_{r} v_{r+1}, v_{r+1} v_{r+2}, u_{d-r-1} u_{d-r}, u_{d-r-1} w_{1}, u_{d-r-1} w_{2}, \ldots, u_{d-r-1} w_{l-}\right.$ $\left.{ }_{3}\right\}$ be the set of l extreme edges of G. Let $S_{1}=S_{e}-\left\{v_{r} v_{r+1}\right\}$ and $S_{2}=S_{e}-\left\{v_{r+1} v_{r+2}\right\}$.

Then by Theorem 1.1, either S_{1} or S_{2} is a subset of every extreme edge-to-vertex geodetic set of G. It is clear that neither S_{1} nor S_{2} is an extreme edge-to-vertex geodetic set of G and so $g_{e v} \geq l$. However, S_{e} is an extreme edge-to-vertex geodetic set of G so that that $g_{e v}=l$. Therefore G is a perfect extreme edge-to-vertex geodesic graph.

Figure 2.5

References

[1] F. Buckley, F. Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, 1990.
[2] G. Chartrand, F. Harary, Zhang, On the Geodetic Number of a graph, Networks vol. 39(1), (2002) 1-6.
[3] G. Chartrand, P. Zhang, Extreme geodesic graphs, Czech. Math. Journal, 52(127)(2002) 771 - 780
[4] F. Hararry, Graph Theory, Addison- Wesley, Reading, MA. 1969.
[5] F. Hararry, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modelling 17 (1993), 89- 95.
[6] John.J, Vijayan .A and Sujitha .S, The upper Edge-to-Vertex Geodetic Number of a Graph, International Journal of Mathematical Archive, 3(4)(2012) 1423-1428.
[7] P.A. Ostrand Graphs with specified radius and diameter, Discrete Math. 4(1973) 71 - 75.
[8] Santhakumaran .A.P and John .J, On the Edge-to-Vertex Geodetic Number of a Graph, Miskolc Mathematical Notes, 13(1)(2012) 107-119.
[9] A. P.Santhakumaran and J. John, The Edge-to-Vertex Geodetic Number of a Graph(submitted).

